Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model
نویسندگان
چکیده
منابع مشابه
An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit
This paper deals with the modeling of a plasma in the quasi-neutral limit using the two-fluid Euler-Poisson system. In this limit, explicit numerical schemes suffer from severe numerical constraints related to the small Debye length and large plasma frequency. Here, we propose an implicit scheme which reduces to a scheme for the quasi-neutral Euler model in the quasi-neutral limit. Such a prope...
متن کاملDiffusion Limit of the Lorentz Model : Asymptotic Preserving Schemes 633
This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuo...
متن کاملA Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics
We propose a low Mach number, Godunov-type finite volume scheme for the numerical solution of the compressible Euler equations of gas dynamics. The scheme combines Klein’s non-stiff/stiff decomposition of the fluxes (J. Comput. Phys. 121:213-237, 1995) with an explicit/implicit time discretization (Cordier et al., J. Comput. Phys. 231:56855704, 2012) for the split fluxes. This results in a scal...
متن کاملAn Asymptotic Preserving scheme for the Euler equations in a strong magnetic field
This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force (the ’Euler-Lorentz’ system). When the magnetic field is large, or equivalently, when the parameter ε representing the non-dimensional ion cyclotron frequency tends to zero, the so-called drift-fluid (or gyrofluid) approximation is obtained. In this limit...
متن کاملAn Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations
We present an Asymptotic-Preserving ’all-speed’ scheme for the simulation of compressible flows valid at all Mach-numbers ranging from very small to order unity. The scheme is based on a semi-implicit discretization which treats the acoustic part implicitly and the convective and diffusive parts explicitly. This discretization, which is the key to the Asymptotic-Preserving property, provides a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Proceedings
سال: 2011
ISSN: 1270-900X
DOI: 10.1051/proc/2011009